The Volume Preserving Mean Curvature Flow near Spheres

نویسندگان

  • JOACHIM ESCHER
  • GIERI SIMONETT
چکیده

By means of a center manifold analysis we investigate the averaged mean curvature flow near spheres. In particular, we show that there exist global solutions to this flow starting from non-convex initial hypersurfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion by volume preserving mean curvature flow near cylinders

We investigate the volume preserving mean curvature flow with Neumann boundary condition for hypersurfaces that are graphs over a cylinder. Through a center manifold analysis we find that initial hypersurfaces sufficiently close to a cylinder of large enough radius, have a flow that exists for all time and converges exponentially fast to a cylinder. In particular, we show that there exist globa...

متن کامل

Existence of Weak Solution for Volume Preserving Mean Curvature Flow via Phase Field Method

Abstract. We study the phase field method for the volume preserving mean curvature flow. Given an initial data which is a measure-theoretic boundary of a Caccioppoli set with a suitable density bound, we prove the existence of the weak solution for the volume preserving mean curvature flow via the reaction diffusion equation with a nonlocal term. We also show the monotonicity formula for the re...

متن کامل

Self-intersections for the Surface Diffusion and the Volume-preserving Mean Curvature Flow

We prove that the surface-diffusion flow and the volumepreserving mean curvature flow can drive embedded hypersurfaces to self-intersections.

متن کامل

A nonlinear partial differential equation for the volume preserving mean curvature flow

We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex ...

متن کامل

Local Well-Posedness for Volume-Preserving Mean Curvature and Willmore Flows with Line Tension

We show the short-time existence and uniqueness of solutions for the motion of an evolving hypersurface in contact with a solid container driven by the volume-preserving mean curvature flow (MCF) taking line tension effects on the boundary into account. Difficulties arise due to dynamic boundary conditions and due to the contact angle and the non-local nature of the resulting second order, nonl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998